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In this paper, we compute the nullity and number of Kekulé structures in a class of hetrofuctional dendrimers (HFD)ei. When 
there is no Kekulé structure in a dendrimer, we find the size of a maximum matching in it. Furthermore, we compute the first 
and fourth version of atom-bond connectivity index, first and fifth version of geometric-arithmetic index and Randić index of 
this dendrimer. 
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1. Introduction 
 
The word “dendrimer” is originated from two distinct 

Greek words "dendri" (branch) and "meros" (part). The first 
dendrimer was introduced in the late 1970's by German 
scientists E. Bhuleier, W. Wehner and F. VÖgtle [2]. 
Dendrimers form a class of polymeric macromolecules. 
They are uni-molecular micelle in nature with special 
physico-chemical properties which make them suitable for 
biological and drug delivery applications [13]. The 
applications of nanostar dendrimers are not restricted to 
drug delivery or diagnosis, they are now extended to gene 
delivery, solubilization, targeting and other biomedical 
applications. The graphical structure of a chemical 
compound can be viewed in terms of a graph, commonly 
known as a molecular graph, where atoms and their 
covalent bonds are respectively considered as the vertices 
and edges of the graph. 

Let G  be an n -vertex molecular graph of a 
hetrofunctional dendrimer with vertex set 

},,,{=)( 21 nvvvGV   and edge set )(GE . An edge in 

)(GE  with end-vertices u  and v  is denoted by uv . 

The order and size of G  are respectively the cardinalities 

|)(| GV  and |)(| GE . A subgraph H  of a graph G  is 

called a spanning subgraph of G  if )(=)( GVHV . A 

),( vu -path on m vertices in G  is a path with vertex set 

}=,,,={ 110 vvvvu m  and edge set 

1}1 | { 1  mivv ii . A subgraph H  of a graph G  

is said to be induced if H  contains all the edges between 
its vertices which are present in G . A subset 

)(GEM   is called a matching if no two edges in M  

share an end-vertex. A vertex )(GVv  is said to be M
-saturated if v  is incident with an edge in M . Otherwise, 

v  is said to be M -unsaturated. A matching M in a 

graph G  is called perfect if it saturates all the vertices of 

G . A path in G  is said to be M -alternating if its edges 

alternately lie in M  and MGE \)( . An M
-alternating path is called M -augmenting if both of its 
end-vertices are M -unsaturated. In molecular graphs, 
perfect matchings correspond to Kekulé structures which 
play an important role in analysis of the resonance energy 
and stability of hydro-carbon compounds [12]. The organic 
compounds without any Kekulé structure are known to be 
chemically unstable. Thus study of Kekulé structures of 
chemical compounds is very important as it explains their 
physico-chemical properties [15]. 

The anti- Kekulé number of a connected graph G , 
denoted by )(Gak , is the minimum number of edges 

which must be deleted from G  to obtain a connected 
subgraph that does not contain any Kekulé structure. 
Obviously, when a graph G  does not contain any Kekulé 
structure then 0=)(Gak . If it is not possible to find a 

connected spanning subgraph of G  without any Kekulé 
structure then =)(Gak . 

Let G  be a graph with vertex set )(GV  and edge 

set )(GE . The adjacency matrix nnijaGA ][=)(  of 

the graph G  is defined by  
 

)).(,(
0

)(1
= GVvv

otherwise

GEvvif
a ji

ji
ij 



 

 

 

The spectrum of )(GA  is the multiset of eigenvalues 
of )(GA . The eigenvalues and spectrum of a graph G are 
the eigenvalues and spectrum of )(GA . The nullity 

)(G  of graph G  is the multiplicity of the eigenvalue 
zero in the spectrum of G . A graph G  is singular if 
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0>)(G  and non-singular otherwise. In [6], Collatz and 
Sinogowitz posed the problem of characterizing singular 
graphs. Since then, the theory of nullity of graphs has 
stimulated much research because of its noteworthy 
applications in chemistry. The role of nullity of graphs in 
chemistry was first recognized by Cvetkovic and Gutman 
[5].  

Farooq et al. [8] considered a class of hetrofunctional 
dendrimer, denoted by ][nD , and computed some 
eccentricity based topological indices. In this paper, we 
consider the same class ][nD  of hetrofunctional 
dendrimers and compute some degree basd topological 
indices. Furthermore, we compute nullity and the number 
of Kekulé structures in ][nD . When there is no Kekulé 
structure, we compute size of the maximum matchings of 
the dendrimers in ][nD . 
 
 

2. A hetrofunctional dendrimer D[n] 
 
In this section, we study the molecular graph of a class 

of hetrofunctional dendrimers (HFD) which is grown at the 
nth  stage ( 1n ) and is denoted by ][nD . The 
molecular graph of ][nD  is shown in Fig. 1. This 
dendrimer is an HFD(ei)-G3-e(allyl) 16-i-(hydroxyl) 28 
molecule which is an HFD with internal hydroxyle and 
peripheral allyl group. The graphs corresponding to 
different growth stages are shown in Fig. 2 3. It is evident 
that ][nD  is a unicyclic graph, thus 

|])[(||])[(| nDEnDV  . Its order is given by  
 












.01,2=38224

1,2=3828216
=|])[(|

1

1

ttnif

ttnif
nDV

t

tt

 

 

 
Fig. 1: ][nD  with 6=n . 

 
 

 
 
 
 
 
 
 

3. The Kekulé structures and maximum  
   matchings in D[n] 
 
In this next section, we find the number of Kekulé 

structures in the graph of the dendrimer ][nD . When there 
is no Kekulé structure in ][nD , we find a maximum 
matching in it and give the size of this maximum matching 
for any stage n 1)( . 

We first give the following lemma.  
Lemma 3.1 For 1=n , there are two Kekulé 

structures in ][nD .  

 

 
Fig. 2. Two distinct perfect matchings in ][nD  with 1=n , 

where thick edges represent a matching. 
 

Proof. Consider the matchings represented by the thick 
edges in Fig. 2-(a) and Fig. 2-(b). There is only one 
hexagon in [1]D  and a hexagon has exactly two Kekulé 
structures. Thus [1]D  has two Kekule structures.  

In the next lemma, we show that ][nD  contains no 

Kekulé structure when n  exceeds 1. 
Lemma 3.2  For 2n , ][nD  has no Kekul e  

structure.  
Proof. From the structure of ][nD , we see that if n  

is even then ][nD  contains a path 7P  whose end vertices 

have degree 1  in ][nD . Denote by 721 ,,, vvv   the 

vertices of 7P . Then 1=)(=)( 71 vdvd , 3=)( 2vd  

and all other internal vertices of 7P  has degree 2  in 

][nD . If M  is a perfect matching in ][nD  then 

Mvv 21 . Since 2)(1  ivd  for ,7}{3,4,i , 

7P  has one M -unsaturated vertex which contradicts the 

fact that M  is a perfect matching.  
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Fig. 3. ][nD  with 2=n  and 4=n . The thick edges represent a matching. Here 21b  represents a branch of ][nD  with 

21  vertices. 
 

If n  is odd then ][nD  contains a path 11P . By 

similar arguments as given above, one can show that 

][nD  has no perfect matching. Thus ][nD  has no 

Kekulé structure for 1n .  

 
Fig. 4. ][nD  with 3=n  and 5=n . The thick edges represent a matching M . 

 

Observation 1: Consider a tree nT  on n -vertices, 

7n , shown in Fig. 5 such that   
    (i) ),( yxd  and ),( wzd  are odd.  

    (ii) ),( zyd  is even.  

 
Fig. 5. A tree nT , 7n . 

Then from the construction of nT , we can easily see 

that the size of a maximum matching in nT  is 1
2





n

. 

 

Observation 2: Let 
1n

T  and 
2nT  be two trees that 

satisfies )(i  and )(ii  of Observation 1 , where 

7, 21 nn . We join 
1n

T  with nT  at vertex x  and 
2nT  
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with nT  at vertex w  and the resulting tree, say 
21 nnnT 

, is shown in Fig. 6. Then the size of a maximum matching 

in 
21 nnnT  is 3

222
21 











 nnn . 

 
 

 
Fig. 6. Joining of 

1n
T  and 

2nT  with nT . 

 
Let M  denote a matching in ][nD  formed by the 

thick edges shown in Fig. 4. In the next theorem, we show 
that M  represents a maximum matching in ][nD . 

Moreover, we give the size of this maximum matching.  
Theorem 3.3  The size of the maximum matching M  

in ][nD  is given by  
 








 ,12=18211

2=18218
|=|

1 tnif

tnif
M

t

t

 

 

where 1t  is an integer.  

Proof. Let 2=n . Then from Fig. 3, we see that there 

are two copies of a tree 17T  each of which joined with one 

pendent vertex of [1]D . The tree 17T  satisfies )(i  and 

)(ii  of observation 1. By Observation 1, the size of a 

maximum matching in 17T  is 1
2

17






. The size of 

maximum matching M  in [2]D  is  
 

41
2

17
2=|| 














M  

                                                                                                             
18=  

18.218= 1       (1) 
 

Let 3=n . Then from Fig. 4, we note that there are 

two copies of a tree 25T  each of which is joined with one 

pendent vertex of [1]D . The tree 25T  satisfies )(i  and 

)(ii  of Observation 1. By Observation 1, the size of a 

maximum matching in 25T  is 1
2

25






. Thus, the size of 

maximum matching M  is [3]D  is  

 41
2

25
2=|| 














M  

 26=  

 18.211= 11                (2) 
 

Let 4=n . Then from Fig. 3, we note that there are 

four copies of a tree 17T  each of which is joined with one 

of pendent vertex of two copies of a tree 25T . The graph 

obtained after joining two copies of 17T  with 25T  

satisfies the condition of Observation 2 . Thus by 
Observation 2 , the size of maximum matching in the join 

of two copies of 17T  and 25T  is 3
2

17
2

2

25










. 

Thus the size of maximum matching M  in [4]D  is  
 

 43
2

17
2

2

25
2=|| 


















M  

 54=  
 18.218= 2                (3) 

 

Let 5=n . Then from Fig. 4, we observe that there are 

four copies of a tree 25T  each of which is joined with one 

pendent vertex of two copies of a tree 25T . By similar 

arguments used to find the size of a maximum matching in 
D[4], we conclude that the size of a maximum matching 
M  in [5]D  is given by  

 

 43
2

25
32=|| 














M  

 70=  
 18.211= 12               (4) 

  

Since the growth of ][nD  is systematic, from (1) and 
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(3), we conclude that when tn 2= , 1,2,...,=t  the size 

of a maximum matching M  in ][nD  is given by  
 

18.218|=|  tM  
 

From (2) and (4), we observe that when 12= tn , 

where 1,2,...,=t  the size of a maximum matching M  

in ][nD  is given by:  
 

18.211|=| 1  tM  
 

This proves the required assertion.  
From Theorem 3.3, we have the following result.  
Corollary 3.4 The anti-Kekul e  number of ][nD  

for 2n  is 0 .  
 
 
4. The nullity of hetrofunctional dendrimers  
   D[n] 
 
In this section, we calculate the nullity of the 

hetrofunctional dendrimers ][nD . Let M  be the 

maximum matching in the graph ][nD  as shown in Fig. 3 

and Fig. 4. The next lemma is useful in calculating the 
nullity of bipartite graphs. 

Lemma 4.1 (Cvetkovic, Gutman [4])   If a bipartite 
graph G  with 1n  vertices does not contain any cycle 
of length 4)mod0(r , then mVG 2|=|)(  , where 

m  is the size of its maximum matching.  
The following lemma is useful in finding nullity of 

graphs with pendent vertices.  
Lemma 4.2 (Cvetkovic, Gutman [5])  Let v  be a 

pendant vertex in a graph G  and u  be the vertex 
adjacent to v . Then )(=)( vuGG  , where 

vuG   is the graph obtained from G  by deleting the 
vertices u  and v .  

 
The nullity of a path and cycle is computed as follows.  
Lemma 4.3 (Cvetkovic, Gutman [5])  (i) The 

eigenvalues of the path nP  are of the form )
1

(cos2
n

k
, 

where nk ,1,=  . Thus,  
 





.0

1
=)(

evenisnif

oddisnif
Pn  

 

 (ii) The eigenvalues of the cycle nC  are 

)
2

(cos2
n

k
, where 1,0,1,= nk  . Thus  

 



 

.0

4)mod(02
=)(

otherwise

nif
Cn  

 
The following lemma states that the sum of the nullities 

of components of a graph is equal to nullity of graph. 
Next theorem gives tha nullity of  . 
Lemma 4.4 (Gutman, Borovicanin [11])  Let 

i

t

i

GG 
1=

= , where iG , for each ti ,1,=  , are 

connected components of G . Then )(=)(
1=

i

t

i

GG   . 

Theorem 4.5 The nullity of ][nD  is given by  
 





 ,2224

1=0
=])[(

nif

nif
nD t  

 

where 
2

=
n

t .  

Proof. Note that [1]D  is a bipartite graph and does 

not contain any cycle of length 4)mod0(r . Also, the 

size of maximum matching in [1]D  is 5. Thus, Lemma 

4.1 gives  
 

0=[1])(D  
 

Now, let 2n . Again ][nD  is a bipartite graph for 

each 2n  and does not contain any cycle of length of 
4)mod0(r . By Theorem 3.3, the size of a maximum 

matching in ][nD  is 18218  t  when tn 2=  and 

18211 1  t  when 12= tn . 

When tn 2= , Lemma 4.1 gives  
 

18)(18238)282(16=])[( 1   tttnD  

2.24=  t  
 

When 12= tn , Lemma 4.1 yields  
 

18)22(1138)2(24=])[( 11   ttnD  

2.24=  t  
 

This proves the assertion. 
 
 

5. Some degree based topological indices of  
   hetrofunctional dendrimers 
 
This section deals with some degree based topological 

indices of the dendrimer ][nD . Let G  be a simple 

connected graph with vertex set )(GV  and the edge set 

)(GE . The degree of vertex )(GVv  is denoted by 

vd . Also, define uS  = vuGNv
d  )(

, where 

)}(|)({=)( GEuvGVvuNG  . Introduced by 

Estarada et al. [7], the atom bond connectivity index 



Computing some degree-based topological indices of a hetrofunctional dendrimer                      579 
 

(hencefourth, IndexABC  ) is defined by  

.
2

=)(
)( vu

vu

GEuv dd

dd
GABC




        (5) 

 

Recently, Ghorbani et al. [9] introduced the fourth 
version of IndexABC   defined by  

 

.
2

=)(
)(

4
vu

vu

GEuv SS

SS
GABC




       (6) 

 

Another well-known connectivity topological 
descriptor is the geometric-arithmetic index (henceforth, 

indexGA ), which was introduced by Vuki c


evi c  and 
Furtula [16] and is defined by  

 

.
2

=)(
)( vu

vu

GEuv dd

dd
GGA




        (7) 

 

 

Graovac et al. [10] proposed the fifth version of 
indexGA , which is defined by  

 

.
2

=)(
)(

5
vu

vu

GEuv SS

SS
GGA




         (8) 

 

With each edge uv , we associate two pairs ),( vu dd  

and ),( vu SS . The edge partition of the dendrimer ][nD  

with respect to degrees of the end-vertices of edges and 
with respect to the sum of degrees of the neighbours of 
end-vertices of edges is given by Table. 1 and Table. 2, 
respectively. 

 

Table 1. ),( vu dd -type edge partion of ][nD , for 3n  and 
2

=
n

t . 

 

),( vu dd  Number of edges 

(1,2)  12 t  

(2,3)  6)(22
0=1=

  it

i

it

i
 

(2,2)  4)(23)(22
2=

1

2=
   it

i

it

i
 if tn 2=  

(2,2)  4)(23)(22 1

1=

1

2=
   it

i

it

i
 if 12= tn  

(1,3)  1

1=
2  it

i
 

 

Table 2. ),( vu SS -type edge partion of ][nD , for 3n  and 
2

=
n

t .  

 

),( vu SS  Number of edges 

(5,5)  1

0=
2  it

i
 

(5,6)  423 1  t  

(6,6)  1

1=
24  it

i
 

(5,3)  1

1=
2  it

i
 

(5,4)  823 1  t  

(4,4)  )2(42 11

1=

1

1=

   it

i

it

i
 if tn 2=  

(4,4)  )2(5 1

1=

 it

i
 if 12= tn  

(4,3)  12 t  
(3,2)  12 t  
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5.1 Results for ABC and ABC4 - Index 
 

Now, we compute the ABC  and 4ABC -indices of 

the dendrimer ][nD  using the edge partition shown in 

Tables 1-2.  
Theorem 5.1 The atom-bond connectivity index of 
][nD , for 12= tn , where 0t  is given by  

 

.6
3

4
26

3

4
2172222=])[(  ttnDABC

 
Proof. We use equation (5) and the edge partitions in 

Table 1.  
For 1=n , we have  
 

vu

vu

Duv dd

dd
DABC

2
=[1])(

(1)




 

22

222
2

32

232
6

21

221
2=












  

                                       

.6
3

4
26

3

4
2172222= 00   

For 3n , we have  

vu

vu

nDuv dd

dd
nDABC

2
=])[(

)(




 

 

32

232
6))(22(

21

221
2=

0=1=

1








  i
t

i

i
t

i

t   

22

222
4))23)(2(2 1

1=

1

2= 


 


 i
t

i

i
t

i

31

231
2 1

1= 


  i
t

i

 

 

.6
3

4
26

3

4
2172222=  tt  

This completes the proof.  
Theorem 5.2 The atom-bond connectivity index of 
][nD , for tn 2= , where 1t  is given by  

 

.6
3

4
26

3

4
2172218=])[(  ttnDABC     

(9) 
 

Proof. We use equation (5) and the edge partitions in 
Table-1.  

For 2=n , we have  
 

vu

vu

Duv dd

dd
DABC

2
=[2])(

(2)




 

31

231
14

22

222
14

32

232
20

21

221
4=


















 6
3

4
219=   

.6
3

4
26

3

4
2172218= 11   

For 4n , we have  

vu

vu

nDuv dd

dd
nDABC

2
=])[(

)(




 

32

232
6))(22(

21

221
2=

0=1=

1








  i
t

i

i
t

i

t  

31

231
2

22

222
4)232(2 1

1=2=

1

2= 






 


 i
t

i

i
t

i

i
t

i

 

.6
3

4
26

3

4
2172218=  tt  

This completes the proof.  
Theorem 5.3 The fourth atom-bond connectivity index 

of ][nD , for 12= tn , where 0t  is given by  

 


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Proof. When 1=n , the fourth atom-bond 

connectivity index of [1]D  can be written as follows: 
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When 3n , using Table-2, the fourth atom-bond 
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connectivity index of ][nD  can be written as follows: 
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This completes the proof.  
Theorem 5.4 The fourth atom-bond connectivity index 

of ][nD , for tn 2= , where 1t  is given by  
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Proof. When 2=n , the fourth atom-bond 

connectivity index of [2]D  can be written as follows: 
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When 4n , using Table-2, the fourth atom-bond 
connectivity index of ][nD  can be written as follows: 

vu

vu

nDEuv SS

SS
nDABC

2
=])[(

])[(
4




 

66

266
)2(4

65

265
4)2(3

55

255
2= 1

1=

11

0= 










   i
t

i

ti
t

i

  

45

245
8)2(3

35

235
2 11

1= 






  ti
t

i

 

 

34

234
2

44

244
))2(42( 11

1

1=

1

1= 






 


  ti
t

i

i
t

i

 
23

223
2 1




 t  

15(5239)34552215(9(2
15

1
= 2

12




t
t

 

1012306)359  .2
5

4
65)3512   

The proof is complete.

 
 

5.2  Results for GA and GA5 - Index 
 

Now, we compute the GA  and 5GA -indices of the 

dendrimer ][nD  using the edge partitions shown in 

Tables 1-2.  
 
 
 
 
 

 
 
Theorem 5.5 The geometric-arithmetic index of 
][nD , for 12= tn  where 0t  is given by  
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Proof. When 1=n , the geometric-arithmetic index of 

[1]D  can be written as follows:  
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When 3n , using Table-1, the geometric-arithmetic 
index of ][nD  can be written as follows: 
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This completes the proof.  
Theorem 5.6 The geometric-arithmetic index of 
][nD , for tn 2= , where 1t  is given by  
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Proof. When 2=n , the geometric-arithmetic index 

of [2]D  can be written as follows:  
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When 4n , using Table-1, the geometric-arithmetic 
index of ][nD  can be written as follows: 
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which is the required result.  
Theorem 5.7 The fifth geometric-arithmetic index of 
][nD , for 12= tn , where 0t  is given by  
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Proof. When 1=n , the fifth geometric-arithmetic 
index of [1]D  can be written as follows:  
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When 3n , using Table-2, the geometric-arithmetic 
index of ][nD  can be written as follows: 
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This completes the proof.  
Theorem 5.8 The fifth geometric-arithmetic index of 
][nD , for tn 2= , where 1t  is given by  
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Proof. When 2=n , the fifth geometric-arithmetic 

index of [2]D  can be written as follows:  
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When 4n , using Table-2, the geometric-arithmetic 
index of ][nD  can be written as follows: 
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This completes the proof.  
 
 

6.  Randić index 
 
The very first and oldest degree based topological 

index is the Randić index, which was introduced by Milan 
Randić [14] in 1975. The Randić index of a graph 

))(),((= GEGVG  is defined as  
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Later on, the general Randić index was introduced by 

Bollobas and Erd o s [3] and Amic et al. [1] in 1988. The 
general Randić index of the graph is defined as  
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Theorem 6.1 The Randić index is given by for 
12= tn , where 0t  can be defined as  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



584                                            Nazia Nazir, Rashid Farooq, Mehar Ali Malik 
 

  




































.
2

1
=133

3

4
6

3

4
)

3

4
(142)

3

7
(12

1,=
6

55

6

35
2

,
2

1
=52346856)3(42)23(142

1,=1642106

=])[(

2

12

12

2

12

1











if

if

if

if

nDR

t
t

t

t
t

t

 

 
Proof. We use the Table-1 to prove the result. 
When 1= : By using Table-1 and equation (11), we 

get:  
 

1

])[(
1 )(=])[( vu

nDEuv

ddnDR 


 

32(23)(26))(22(=
1

2=

1

0=1=

 


i
t

i

i
t

i

i
t

i

 

11

1=

2)(24)2   i
t

i

+ 11

1=

3)(1)2(  i
t

i

 

11 2)(12  t  

164.2106= 1  t  

When 
2

1
= : By using Table-1 and equation (11), we 

get:  

2

1

])[(2

1 )(=])[( vu
nDEuv

ddnDR 


 

 

2

1
1

1=

1

2=

2

1

0=1=

2)(24))(23)(2(23)(26))(22(=  


 i
t

i

i
t

i

i
t

i

i
t

i

 

 

+ 2

1
12

1
1

1=

2)(123)(1)2(   ti
t

i

 

52.346856)3(42)23(142= 2

12




t
t
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This completes the proof.  
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Theorem 6.2 The randic index of ][nD  for tn 2= , 

where 1t , can be defined as  
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Proof. We use the Table-1 to prove the results. 
When 1= : By using the edge partition in Table-1 
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This completes the proof. 

 
 

7.  Conclusion 
 
We considered a class of hetrofunctional dendrimer 

and studied three types of topological descriptors for its 
underlying molecular graph. For the matching based 
topological indices, we studied number of perfect 
matchings, size of maximum matching and the anti-Kekulé 
number of the graph. For spectrum based topological 
indices, we computed nullity of the moecular graphs of 
these dendrimers. In the case of degree based topological 
indices, we calculated first and fourth version of atom-bond 
connectivity index, first and fifth versions of 
geometric-arithmatic index and the Randić of these 
hetrofunctional dendrimers. 

 
 
Acknowledgements 
 
The first author is thankful to the Higher Education 

Commission of Pakistan for supporting this research under 
the grant 20-3067/NRPU/R&D/HEC/12/831. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

References 
 

 [1]   D. Amic, D. Beslo, B. Lucic, S. Nikolic, Trinajstić, 
J. Chem. Inf. comput. Sci. 38, 819 (1998). 

 [2]  E. Bhuleier, W. Wehner, F. VÖgtle, Synthesis, 2, 155 
(1978). 

 [3]  B. Bollabás, P. Erdös, Ars Combin, 50, 225 (1998). 
 [4]  D. Cvetkovic, I. Gutman, N. Trinajstić, Croat. Chem. 

Acta, 44, 365 (1972). 
 [5]  D. Cvetkovic, I. Gutman, Matematicki Vesnik 

(Beograd) 9, 141 (1972). 
 [6]  L. Collatz, U. Sinogowitz, Abh. Math. Sere. Univ. 

Hamburg, 21, 63 (1957). 
 [7]   E. Estrada, L. Torres, L. Rodriguez, I. Gutman, 

Indian J. Chem. 37(A), 849 (1998). 
 [8]  R. Farooq, N. Nazir, M. A. Malik, M. Arfan, J. 

Optoelectron. Adv. Mater. 17(11) 1799 (2015). 
 [9]  M. Ghorbani, M. A. Hosseinzadeh, Optoelectron. 

Adv. Mat. 4, 1419 (2010). 
[10]  A. Graovac, M. Ghorbani, M. A. Hosseinzadeh, J. 

Math. Nanosci. 1, 33 (2011). 
[11]  I. Gutman, B. Borovicanin, Zb. Rad. (Beogr.) 22, 137 

(2011). 
[12]  I. Gutman, O. Polansky, Springer-Verlag, Berlin, 

(1986). 
[13]  B. K. Nanjwade, H. M. Bechara, G. K. Derkar, F. V. 

Manvi, V. K. Nanjwade, European Journal of 
Pharmaceutical, 38 (3), 185 (2009). 

[14]  M. Randic, J. Am. Chem. Soc. 97(23), 6609 (1975). 
[15]  M. Randic, Chem. Rev. 103, 34 (2003). 
[16]  D. Vukičević, B. Furtula, J. Math. Chem. 46, 13 

(2009). 
 
_________________________ 
*Corresponding author: alies.camp@gmail.com 


